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Abstract

The algebraic flux correction (AFC) paradigm is extended to finite element discretizations with a consistent mass matrix.
It is shown how to render an implicit Galerkin scheme positivity-preserving and remove excessive artificial diffusion in
regions where the solution is sufficiently smooth. To this end, the original discrete operators are modified in a mass-con-
serving fashion so as to enforce the algebraic constraints to be satisfied by the numerical solution. A node-oriented limiting
strategy is employed to control the raw antidiffusive fluxes which consist of a convective part and a contribution of the
consistent mass matrix. The former offsets the artificial diffusion due to ‘upwinding’ of the spatial differential operator
and lends itself to an upwind-biased flux limiting. The latter eliminates the error induced by mass lumping and calls for
the use of a symmetric flux limiter. The concept of a target flux and a new definition of upper/lower bounds make it pos-
sible to combine the advantages of algebraic FCT and TVD schemes introduced previously by the author and his cowork-
ers. Unlike other high-resolution schemes for unstructured meshes, the new algorithm reduces to a consistent (high-order)
Galerkin scheme in smooth regions and is designed to provide an optimal treatment of both stationary and time-dependent
problems. Its performance is illustrated by application to the linear advection equation for a number of 1D and 2D
configurations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For decades, the development of numerical methods for convection-dominated flows has been one of the
primary research directions in computational fluid dynamics. A variety of stabilization techniques and high-
resolution schemes based on flux/slope limiting were proposed to combat the onset of nonphysical oscillations
but no universally effective remedy has been found to date. A typical disadvantage of currently available
discretization techniques is the lack of generality. The foundations of modern high-resolution schemes
were developed in the finite difference framework using essentially one-dimensional concepts and, typically,
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geometric design criteria. As a result, many popular algorithms are limited to Cartesian meshes and/or explicit
time-stepping schemes.

The design of genuinely multidimensional high-resolution schemes for finite element discretizations on
unstructured meshes has proved to be a particularly challenging task. In the late 1980s and early 1990s,
flux-corrected transport (FCT) and total variation diminishing (TVD) algorithms were carried over to explicit
Galerkin schemes based on linear/bilinear finite elements [2,27–29,33,34]. In spite of some inherent limitations
to be mentioned below, these straightforward extensions produced very promising results but were met with
little enthusiasm by FEM practitioners. The current trend in the unstructured grid community is to use finite
volume upwinding [12,36], residual distribution/fluctuation splitting [6,9] or discontinuous Galerkin methods
[7,8]. Stabilization without shock capturing (streamline diffusion, edge stabilization/interior penalty) has also
been widely used in the FEM context, especially for incompressible flows.

In a series of recent publications, the author and his collaborators introduced an algebraic approach to the
design of high-resolution schemes which has made it possible to incorporate flux limiters of FCT and TVD
type into implicit finite element schemes [20–23]. The underlying algebraic flux correction paradigm can be
summarized as follows: take the matrix resulting from an arbitrary discretization of the convective term
and modify it so as to enforce the M-matrix property making sure that:

� all modifications are conservative, i.e., there is no loss or gain of ‘mass’;
� the original high-order discretization is recovered in regions of smoothness.

To this end, a positivity-preserving low-order scheme is constructed by resorting to mass lumping followed
by a conservative elimination of negative off-diagonal coefficients. Then the accuracy is enhanced by adding a
limited amount of compensating antidiffusion, whereby the raw antidiffusive fluxes are limited node-by-node
so as to satisfy the imposed algebraic constraints. Remarkably, all the necessary information is provided by
the matrix coefficients, so that flux limiting can be performed in a ‘‘black-box’’ fashion.

Flux correction of FCT type is applicable to Galerkin schemes with a consistent mass matrix [21,27]
and yields highly accurate solutions to time-dependent problems. However, the amount of admissible anti-
diffusion is inversely proportional to the time step, which compromises the advantages of unconditionally
stable implicit schemes. Moreover, severe convergence problems are observed in the steady-state limit. On
the other hand, flux correction of TVD type is independent of the time step and optimal for the treatment
of stationary problems. Standard TVD limiters can be integrated into unstructured grid codes and applied
edge-by-edge [2,28] or node-by-node [22,23], so as to control the slope ratio for a local 1D stencil or the
net antidiffusive flux, respectively. In either case, the resulting scheme proves local extremum diminishing
(LED) but mass lumping is mandatory and there is an alarming ambiguity in the choice of the limiter
function.

In fact, standard limiters like minmod or superbee are designed to constrain the antidiffusive flux for the 1D
convection equation discretized by finite differences on a uniform mesh. They are defined as functions lying in
the second-order TVD region, which corresponds to a nonlinear combination of the Lax–Wendroff and
Beam–Warming methods. At the same time, the flux limiter for a finite element scheme should be designed
to recover a consistent-mass (Taylor-)Galerkin discretization, as in the case of multidimensional FEM-FCT
schemes. The use of one-dimensional TVD limiters is not to be recommended because a certain amount of
artificial (anti-)diffusion is added even if there is no need for limiting. Hence, the resulting approximation does
not reduce to the original Galerkin scheme and cannot be guaranteed to be second-order accurate for smooth
data.

In the present paper, we recapitulate the principles of algebraic flux correction and focus on the choice of
upper/lower bounds for the antidiffusive flux which corresponds to a conventional Galerkin discretization.
Building on our experience with algebraic FCT and TVD schemes, we design a symmetric flux limiter for
the contribution of the consistent mass matrix and blend it with an upwind-biased flux limiter for the discret-
ized convective term. As a result, we obtain a new high-resolution finite element scheme which yields time-
accurate solutions to transient problems and, moreover, does not suffer from a loss of accuracy if large time
steps are employed when the solution approaches a highly convective steady-state. Numerical examples are
presented for 1D and 2D benchmark problems.
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2. Conservative flux decomposition

Let us start with the definition of diffusive and antidiffusive fluxes for finite element discretizations. The
reader who is already familiar with algebraic flux correction [23] may want to skip this section. Consider
the time-dependent continuity equation
ou
ot
þr � ðvuÞ ¼ 0 ð1Þ
discretized in space by a high-order finite element (Galerkin or Taylor–Galerkin) method which yields a DAE
system for the vector of time-dependent nodal values
MC

du
dt
¼ Ku; ð2Þ
where MC = {mij} denotes the consistent mass matrix and K = {kij} is the discrete transport operator resulting
from the discretization of the convective term.

It is well known that even stabilized high-order methods may produce nonphysical undershoots and over-
shoots in the vicinity of steep gradients. On the other hand, upwind-like approximations are nonoscillatory
but overly diffusive. This is why modern high-resolution schemes use flux or slope limiters to switch between
such linear approximations in an adaptive way. Roughly speaking, the high-order method is used in regions
where the solution is sufficiently smooth and the low-order method elsewhere. In order to blend these methods
automatically without resorting to artificial parameters typical of hybrid upwind discretizations [36], one
needs to define certain mathematical criteria which guarantee that the numerical solution remains nonoscilla-
tory. These criteria can be expressed as algebraic constraints to be imposed on a linear high-order discretiza-
tion like (2).

A very handy criterion, which represents a generalization of Harten’s TVD theorem, was introduced by
Jameson [15,16] who proved that a semi-discrete scheme of the form
dui

dt
¼

X
j 6¼i

cijðuj � uiÞ; cij P 0 8j 6¼ i ð3Þ
is local extremum diminishing (LED). After the discretization in time, such schemes remain positivity-preserv-
ing provided that each solution update un! un+1 or the converged steady-state solution un+1 = un satisfies an
equivalent algebraic system [23]
Aunþ1 ¼ Bun; ð4Þ

where A = {aij} is an M-matrix and B = {bij} has no negative entries so that
un P 0) unþ1 ¼ A�1Bun P 0: ð5Þ

This extra requirement yields a readily computable upper bound for admissible time steps.

In the linear case, the above algebraic criteria can be readily enforced by means of ‘discrete upwinding’ as
proposed in [19,20]. For a finite element scheme of the form (2), the required matrix manipulations are as
follows:

� replace the consistent mass matrix MC by its lumped counterpart ML = diag{mi};
� render the operator K local extremum diminishing by adding an artificial diffusion operator D = {dij} so as

to eliminate all negative off-diagonal coefficients.

At the end of the day, this gives a linear LED counterpart of (2) which reads
ML

du
dt
¼ Lu; where L ¼ K þ D: ð6Þ
The artificial diffusion operator D is designed to be a symmetric matrix with zero row and column sums.
Therefore, the term Du can be decomposed into a sum of skew-symmetric internodal fluxes associated with
the edges of the sparsity graph [23]
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ðDuÞi :¼ �
X
j 6¼i

f d
ij ; f d

ij ¼ dijðui � ujÞ ¼ �f d
ji : ð7Þ
A natural choice of the artificial diffusion coefficient dij for the edge ~ij is [20]
dij ¼ maxf�kij; 0;�kjig ¼ dji: ð8Þ

Alternatively, one can apply discrete upwinding to the skew-symmetric part 1

2
ðK � KTÞ of the high-order

transport operator K, which corresponds to
dij ¼
jkij � kjij

2
� kij þ kji

2
¼ dji: ð9Þ
In either case, the off-diagonal coefficients of the low-order operator lij := kij + dij P 0 are nonnegative so that
the LED criterion is satisfied. Without loss of generality, the edge ~ij is oriented so that lij 6 lji, which implies
that node i is located ‘upwind’ and corresponds to the row number of the eliminated negative coefficient
[22,23].

The raw antidiffusive fluxes which offset the error induced by mass lumping and discrete upwinding so that
the original Galerkin scheme (2) is recovered are given by
fij ¼ mij
d

dt
þ dij

� �
ðui � ujÞ ¼ f m

ij þ f d
ij ; f m

ij ¼ mijð _ui � _ujÞ: ð10Þ
Note that the above expression contains a time derivative which still needs to be discretized (cf. [20,21]). In
order to prevent the formation of nonphysical local extrema, the raw antidiffusive fluxes are multiplied by suit-
able correction factors (see below)
f �ij :¼ aijfij; where 0 6 aij 6 1: ð11Þ
Inserting these fluxes into the right-hand side of (6) one obtains a nonlinear combination of the low-order
scheme (aij ” 0) and the original high-order one (aij ” 1). The task of the flux limiter is to determine an optimal
value of each correction factor aij so as to remove as much artificial diffusion as possible without generating
spurious oscillations.
3. Flux correction in one dimension

In order to introduce some useful concepts in a rather simple setting, let us start with flux correction for the
one-dimensional linear advection equation
ou
ot
þ v

ou
ox
¼ 0; v > 0 ð12Þ
discretized in space on a uniform mesh of linear finite elements. It is well known that the lumped-mass Galer-
kin scheme is equivalent to the central difference method. In this case, the elimination of negative off-diagonal
coefficients leads to the classical upwind difference scheme [23]. The corresponding artificial diffusion coeffi-
cient (8) equals dij = v/2.

In the one-dimensional case, the overly diffusive upwind approximation can be transformed into a second-
order scheme by adding antidiffusive fluxes of the form
fij ¼ /idijðui � ujÞ; ð13Þ

where j = i + 1 and /i is a function of the slope ratio evaluated at node i, for instance
/i ¼ nþ ð1� nÞri; ri ¼
ui�1 � ui

ui � uiþ1

: ð14Þ
For any value of 0 6 n 6 1, the scaled antidiffusive correction (13) renders the upwind discretization second-
order accurate. The central difference scheme is recovered for n = 1, whereas n = 0 corresponds to a backward
difference approximation of second order. In general, the multiplier /i is supposed to adjust the antidiffusion
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coefficient dij so that a certain high-order discretization (‘target scheme’) is recovered if no flux limiting is per-
formed. This interpretation of (13) leads to the following definition, cf. [39]

Definition. A target flux represents the amount of raw antidiffusion that converts a low-order approximation
of the convective term into the desired high-order one.

In the course of flux correction, each target flux fij is replaced by its limited counterpart f �ij ¼ aijfij to make
sure that the resulting semi-discrete scheme
dui

dt
þ vuiþ1=2 � vui�1=2

Dx
¼ 0; vuiþ1=2 :¼ vui � f �ij ð15Þ
remains local extremum/total variation diminishing. For our purposes, it is worthwhile to represent the lim-
ited antidiffusive flux for a classical TVD scheme as follows:
f �ij :¼ maxf0;minf2;/i; 2riggdijðui � ujÞ: ð16Þ
Note that the effective correction factor aij ¼ f �ij=fij is bounded by 0 and 1, whereas the limited coefficient /i

may vary between 0 (backward difference) and 2 (forward difference). By construction, the limited antidiffusive
flux admits the representation f �ij ¼ cikðuk � uiÞ, where k = i � 1 and cik P 0. The LED criterion and Harten’s
TVD conditions for the downwind node j are also satisfied, since the antidiffusive flux fji is neutralized by the
diffusive contribution lji(ui � uj) of the low-order operator (see the following section).

The above interpretation of TVD schemes, which can be traced back to [39], reveals that the numerous ‘lim-
iter functions’ proposed in the literature differ merely in the definition of the underlying target flux. The most
popular representatives are:
minmod /i ¼ minf1; rig;
Van Leer /i ¼ 2ri=ð1þ riÞ;
MC /i ¼ ð1þ riÞ=2;

Koren /i ¼ ð2þ riÞ=3;

superbee /i ¼ maxf1; rig:

The best accuracy attainable within Sweby’s second-order TVD region is provided by Koren’s limiter [18]
which has been repeatedly reinvented under different names [1,35]. Due to the fact that the leading terms in
the modified equation cancel out, the resulting scheme is third-order accurate for sufficiently smooth data.

Flux limiters of TVD type based on the above definitions of /i can also be interpreted as limited average
operators [15,16] and used to enforce the LED property in the finite element framework [22,28,30]. However,
the associated target fluxes (13) are certain to ensure second-order accuracy only for a constant velocity v on a
uniform mesh, whereas the real target fluxes for a finite element scheme are uniquely defined by (10). There-
fore, straightforward generalizations of TVD schemes to multidimensions (including those proposed by the
author) are likely to pollute the solution in smooth regions, and second-order accuracy can no longer be guar-
anteed. For this reason, the use of standard TVD limiters is not to be recommended for finite element discret-
izations on unstructured meshes.

On the other hand, it is instructive to examine the mechanism which guarantees that the limited antidiffu-
sive flux does not violate the LED criterion. As a matter of fact, the constraints imposed in (16) are not opti-
mal, since the left boundary of the TVD region depends on the Courant number [14,39]. However, ignoring
this dependence in favor of the simple formula aij/i = max{0,min{2,/i, 2ri}} makes such limiters remarkably
efficient and directly applicable to stationary problems. That is, instead of computing a sharp bound for a
given time step (which is particularly expensive in multidimensions) one can use some reasonable fixed bounds
and adjust the time step if this is necessary to satisfy a CFL-like condition. In what follows, we will use a sim-
ilar approach to design the upper and lower bounds for our algebraic flux correction schemes.

4. Flux correction in multidimensions

The discussion of one-dimensional TVD discretizations in the previous section gives an insight into the
design philosophy of modern high-resolution schemes which carries over to multidimensions. Antidiffusive
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fluxes which violate the LED criterion (3) and, therefore, need to be limited are of the form fij = pij(uj � ui),
where pij 6 0. On the other hand, edge contributions with nonnegative coefficients resemble diffusive fluxes
and are harmless. Therefore, some antidiffusion is admissible as long as there exists a solution-dependent coef-
ficient qik P 0 such that fij = qik(uk � ui). In other words, the antidiffusive flux from node j into node i should
be interpreted as a diffusive flux from another node. In order to enforce this sufficient condition, we resort to a
node-based limiting strategy which was largely inspired by Zalesak’s limiter [38] but is even more general. As
we are about to see, it can be used to construct a variety of algorithms which differ in the definition of upper/
lower bounds as well as in the type of flux limiting (upwind or symmetric).

In the multidimensional case, the net antidiffusive correction to each node may consist of both positive and
negative edge contributions. Assuming the worst-case scenario, we shall limit them separately according to the
following generic algorithm:

1. Compute the sums of positive and negative antidiffusive fluxes represented as edge contributions
fij = pij(uj � ui) with negative coefficients pij 6 0
Pþi ¼
X
j 6¼i

pij minf0; uj � uig; P�i ¼
X
j 6¼i

pij maxf0; uj � uig: ð17Þ
2. Define the upper and lower bounds to be imposed in the course of flux correction as a sum of edge contri-
butions with nonnegative coefficients qij P 0
Qþi ¼
X
j 6¼i

qij maxf0; uj � uig; Q�i ¼
X
j 6¼i

qij minf0; uj � uig: ð18Þ
3. Evaluate the nodal correction factors for positive/negative antidiffusive fluxes
Rþi ¼ min 1;Qþi =Pþi
� �

; R�i ¼ min 1;Q�i =P�i
� �

: ð19Þ
4. Multiply the target flux fij by a combination of R�i and R�j such that
f �ij ¼ aijfij; aij ¼
aðRþi ;R�j Þ if f ij > 0;

aðR�i ;Rþj Þ otherwise:

(
ð20Þ
The last part calls for further explanation. Recall that the edges of the sparsity graph are oriented so that
0 6 lij 6 lji = kji + dij. Furthermore, the nodal correction factors (19) are designed so as to enforce the LED
constraint jR�i P�i j 6 jQ�i j for the upwind node i. After flux limiting, the contribution of the edge ~ij to the
downwind node j is given by
ljiðui � ujÞ � f �ij ¼ ðlji þ aijpijÞðui � ujÞ ð21Þ
and also proves local extremum diminishing provided that the (negative) antidiffusion coefficient pij and the
correction factor aij satisfy the inequality lji + aijpij P 0.

In light of the above, algebraic flux correction can be performed in two different ways:

� Upwind-biased flux correction: ‘prelimit’ the target flux fij = pij(uj � ui) to satisfy the positivity constraint for
node j before computing the sums P�i in (17)
f 0ij ¼ minf�pij; ljigðui � ujÞ ð22Þ
and use the correction factors aij ¼ R�i to enforce the LED property for node i.
� Symmetric flux correction: limit fij using the minimum of nodal correction factors for both nodes, i.e.,

aij ¼ minfR�i ;R�j g so that the following estimates holdX

Q�i 6 R�i P�i 6

j 6¼i

aijfij 6 Rþi Pþi 6 Qþi : ð23Þ
In the FEM context, the optimal choice of the limiting strategy depends on the magnitude of the antidif-
fusion coefficient pij = fij/(uj � ui) for the target flux fij as defined by (10).



D. Kuzmin / Journal of Computational Physics 219 (2006) 513–531 519
The above methodology is not to be confused with Zalesak’s multidimensional FCT algorithm [38,40]. In fact,
standard (two-step) FCT methods do not fit into this framework, since the computation of a provisional low-
order solution makes them inherently explicit. However, we intentionally use the same notation to emphasize
the common features such as the node-oriented approach to flux correction which makes it possible to control
the interplay of multiple antidiffusive fluxes acting in concert. The main advantage of the algorithm (17)–(20)
as compared to the classical Zalesak limiter is a remarkable flexibility in the choice of upper/lower bounds Q�i
which makes it possible to bridge the gap between algebraic flux correction schemes of FCT and TVD type.

4.1. Treatment of convective antidiffusion

For the time being, let us assume that the problem at hand is stationary and neglect the contribution of the
consistent mass matrix which will be considered in the following section. The prelimited target flux (22) for a
lumped-mass Galerkin discretization is given by
f 0ij ¼ minfdij; ljigðui � ujÞ; ð24Þ
where dij is the artificial diffusion coefficient for discrete upwinding. It is worth mentioning that there is actu-
ally no need for prelimiting as long as lji � aijdij = kji + (1 � aij)dij P 0. Therefore, the above target flux re-
duces to f d

ij as defined in (7), unless both off-diagonal coefficients of the high-order operator K were
negative (a rather unusual situation).

In this particular case, the upwind-biased limiting strategy is preferable. The total amount of raw antidif-
fusion received by node i from its downwind neighbors is given by
P�i ¼
X
j2Ji

max
min
f0; f 0ijg; where Ji ¼ fj 6¼ ij0 ¼ lij < ljig: ð25Þ
The nonnegative off-diagonal coefficients of the low-order operator L can be used to define the upper/lower
bounds as in the case of algebraic TVD schemes [22,23]
Q�i ¼
X
j 6¼i

lij
max
min
ðuj � uiÞ; lij P 0 8j 6¼ i: ð26Þ
Flux limiting is performed using the nodal correction factor for the upwind node:
f �ij ¼
Rþi f 0ij if f 0ij > 0;

R�i f 0ij otherwise;

(
f �ji :¼ �f �ij : ð27Þ
Remarkably, all the necessary information is extracted from the original matrix K and there is no need to
know the coordinates of nodes or any other geometric details.

In one dimension, the resulting algorithm reduces to the flux-limited central difference scheme which cor-
responds to f �ij ¼ maxf0;minf1; 2riggdijðui � ujÞ in accordance with (16). A family of local extremum dimin-
ishing schemes based on standard TVD limiters can be derived using target fluxes of the form (13), where the
artificial diffusion coefficient dij is given by (9) and /i is a function of the smoothness indicator ri. The latter is
redefined as the ratio of edge contributions with positive and negative coefficients [22,23]
r�i ¼
P

j 6¼i maxf0; kij � kjigmax
min
f0; uj � uigP

j 6¼i minf0; kij � kjigmin
max
f0; uj � uig

;

which reduces to the usual slope ratio in the 1D case. Even though this ad hoc approach to the design of target
fluxes works well in practice, it is no longer possible to guarantee that a high-order Galerkin approximation is
recovered in smooth regions. For the flux-limited scheme to be consistent with the original one (2), it is nec-
essary to use the target flux fij given by (10), as in the case of multidimensional FEM-FCT algorithms [21,27].
Hence, it is a waste of time to design an optimal formula for /i as a function of the smoothness sensor ri. In the
finite element context, the accuracy of algebraic flux correction schemes should depend solely on the resolving

power [40] of the underlying high-order method and can be enhanced by a suitable choice of basis functions in
the variational formulation.
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4.2. Treatment of mass antidiffusion

For genuinely time-dependent problems, mass lumping degrades the phase accuracy of finite element
schemes and deprives them of a significant advantage in comparison to finite difference and finite volume
methods. Berzins [3,4] recognized the need for including the consistent mass matrix in a positivity-preserving
fashion and presented some ideas as to how this can be accomplished. As of this writing, no truly multidimen-
sional extension of his methodology seems to be available, so we need to look for another way to embed the
consistent mass matrix into algebraic flux correction schemes.

The contribution of the mass matrix to target fluxes of the form (10) may be large enough to render the
upwind-biased limiting strategy impractical. Furthermore, the upper and lower bounds based on the coeffi-
cients of the low-order operator (26) are independent of the time step and may turn out to be too restrictive.
In this section, we concentrate on the treatment of mass antidiffusion ðML �MCÞ _u assuming that the convec-
tive part f d

ij of the target flux vanishes. In this case, the flow direction (upwind/downwind) is unknown and the
antidiffusive flux may violate the positivity condition for both nodes. Therefore, we adopt the symmetric lim-
iting strategy and discuss the choice of constraints to be imposed on the fully discretized target flux f m

ij which
corresponds to
fij ¼
mij

Dt
unþ1

i � unþ1
j

� �
� mij

Dt
un

i � un
j

� �
: ð28Þ
Interestingly enough, this flux consists of a truly antidiffusive implicit part and a diffusive explicit part which
has a strong damping effect. In fact, explicit mass diffusion of the form (MC �ML)un has frequently been used
to construct a ‘monotone’ low-order method in the framework of high-resolution finite element schemes
[11,33,34].

If the standard FEM-FCT algorithm is employed, the corresponding upper and lower bounds Q�i depend
on the local extrema ~u�i of the low-order solution ~u ¼ un þ DtM�1

L Lun which reduces to un in the case L = 0 (no
convection). In order to avoid the computation of ~u and accommodate the contribution of the convective term
in what follows, we use a weaker constraint and redefine the auxiliary quantities P�i and Q�i as follows:
P�i ¼
X
j 6¼i

max
min
f0; fijg; Q�i ¼

X
j 6¼i

mij

Dt
max
min
f0; un

j � un
i g; ð29Þ
where the off-diagonal coefficients of the consistent mass matrix mij are tacitly assumed to be nonnegative.
Note that the nodal correction factors R�i ¼ minf1;Q�i =P�i g are independent of the time step, since both
P�i and Q�i are inversely proportional to it.

If the coefficient pn
ij ¼ fij=ðun

j � un
i Þ is nonnegative, the target flux (28) turns out to be diffusive, which may

or may not be desirable. Otherwise, it may violate the positivity constraint for both nodes and should be lim-
ited in a symmetric fashion
f �ij ¼
minfRþi ;R�j gfij if f ij > 0;

minfR�i ;Rþj gfij otherwise;

(
f �ji ¼ �f �ij : ð30Þ
Another way to define Q�i is to replace un
j in (29) by the local extrema uþi ¼ maxjun

j and u�i ¼ minjun
j evaluated

over j such that mij 6¼ 0. This yields Q�i ¼ mi�mii
Dt ðu�i � un

i Þ, where mi � mii ¼
P

j 6¼imij is the difference between the
diagonal entries of ML and MC.

4.3. General-purpose flux limiter

Now that we have a stand-alone flux limiter for convective antidiffusion (see Section 4.1) and a stand-alone
flux limiter for mass antidiffusion (see Section 4.2) at our disposal, we can proceed to the treatment of anti-
diffusive fluxes (10) which involve both contributions. The operator splitting approach, i.e., a segregated lim-
iting of f d

ij and f m
ij is feasible but the results are rather disappointing, especially if the two components have

different signs. In particular, the magnitude of the antidiffusive flux may increase, which is clearly unaccept-
able. Furthermore, our experience with flux correction of FCT type indicates that it is worthwhile to prelimit
fij so as to prevent it from becoming diffusive and creating numerical artifacts [20,23]. Therefore, let us adjust
the target fluxes thus:
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fij :¼ minf0; pijgðuj � uiÞ; pij ¼ f d
ij þ f m

ij

� �
=ðuj � uiÞ: ð31Þ
It remains to specify the upper/lower bounds Q�i and choose the flux limiting strategy. Both algorithms con-
sidered so far are directly applicable to target fluxes of the form (31) but their performance is highly problem-
dependent. It is not unusual that pij + lji < 0 if mass antidiffusion is strong enough, which means that a signif-
icant portion of the target flux cannot be recovered by the upwind-biased flux limiter alone. In other cases,
symmetric flux limiting may produce inferior results because taking the minimum of nodal correction factors
turns out to be more restrictive than prelimiting based on (22).

A straightforward but inefficient way to combine the two flux limiting techniques is to apply them sequen-
tially. For instance, one can use the upwind-biased algorithm (25)–(27) to predict f �ij and limit the rejected anti-
diffusion Dfij ¼ fij � f �ij according to (29) and (30) or vice versa. In any event, the effective upper and lower
bounds for the sum of limited antidiffusive fluxes f �ij þ Df �ij consist of the ‘stationary’ upwind part (26) and
the ‘time-dependent’ symmetric part (29) which complement each other in the following way:

� the former makes sure that a certain fraction of admissible antidiffusion is independent of the time step,
which prevents a loss of accuracy in steady-state computations;
� the latter makes sure that solutions to truly time-dependent problems become more accurate as Dt is

refined, since a larger portion of the target flux may be retained.

Both constituents of Q�i were constructed using heuristic arguments rather than the intrinsic ‘CFL’ condi-
tion which requires that the diagonal coefficient in the right-hand side of (4) be nonnegative for a given Dt.
Such estimates would be expensive to obtain and sometimes overly restrictive, e.g., for stationary problems
solved by time marching. Therefore, we deliberately relax them to make the algorithm more efficient, improve
the convergence rates, and satisfy the discrete maximum principle in the steady-state limit.

Instead of limiting the target fluxes by the algorithms (25)–(27) and/or (29) and (30) in a segregated way or
sequentially, it is worthwhile to combine the corresponding quantities P�i and Q�i , which leads to the following
general-purpose (GP) limiting strategy:

1. Use prelimiting (22) to split the target flux (31) into the ‘upwind’ part f 0ij and the remainder Dfij :¼ fij � f 0ij
which violates the positivity constraint for node j.

2. Compute the total sums of raw antidiffusive fluxes which need to be constrained
P�i ¼
X
j2Ji

max
min
f0; f 0ijg þ

X
j 6¼i

max
min
f0;Dfijg: ð32Þ
3. Define the combined upper/lower bounds to be enforced on P�i as follows
Q�i ¼
X
j 6¼i

mij

Dt
þ lij

h i
max
min
ðuj � uiÞ: ð33Þ
4. Evaluate the nodal correction factors (19) for the flux limiting step
R�i ¼ min 1;Q�i =P�i
� �

: ð34Þ
5. In a loop over edges, compute the antidiffusive correction f �ij þ Df �ij , where
f �ij ¼ R�i f 0ij; Df �ij ¼ min R�i ;R
�
j

n o
Dfij: ð35Þ
Note that the first sum in (32) is evaluated over the set of downwind nodes Ji (see (25)) while the second
one contains antidiffusive edge contributions from all neighboring nodes.

The above algorithm reduces to its prototypes (25)–(27) and (29) and (30) in the special cases of a lumped
mass matrix (mij = 0) or zero velocity (dij = 0, lij = 0), respectively. Of course, there are many other ways to
select and enforce the upper/lower bounds. This flexibility may be used to incorporate additional (geometric)
constraints such as linearity preservation [6] so as to provide optimal accuracy and/or consistency on irregular
meshes. Ideally, the limiter should be designed so that the high-order scheme is recovered if the solution is
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smooth enough or h! 0. On the other hand, the accuracy of the target flux rather than the choice of con-
straints and the type of flux limiting is decisive in many cases. Hence, the use of higher-order finite elements
and/or time-stepping schemes appears to be a promising way to improve the performance of algebraic flux
correction schemes.
5. Practical implementation

To make the presentation self-contained, we touch upon the iterative treatment of nonlinearities and dis-
cuss the practical implementation of the GP flux limiter (32)–(35) at the end of this section. In this paper,
emphasis is laid on implicit time discretizations, since the fully explicit case is trivial from the viewpoint of
linear algebra (no linear systems need to be solved). Moreover, if the use of small time steps is dictated by
accuracy considerations, the explicit FEM-FCT algorithm of Löhner et al. [27] can be employed to constrain
the target fluxes (31) in an efficient manner. Our goal is to develop a general methodology which is applicable
to implicit finite element discretizations and provides a sufficiently accurate treatment of both stationary and
time-dependent problems.

After the discretization in time by an implicit h-scheme such that 0 < h 6 1, the flux-limited Galerkin
scheme can be represented in the form
½ML � hDtL�unþ1 ¼ ½ML þ ð1� hÞDtL�un þ Dtf �; ð36Þ
where the last term is assembled from the limited antidiffusive fluxes given by (35)
f �i ¼
X
j 6¼i

½f �ij þ Df �ij �: ð37Þ
This nonlinear algebraic system must be solved iteratively. Let us compute successive approximations to the
solution un+1 using the straightforward defect correction scheme
uðmþ1Þ ¼ uðmÞ þ AðuðmÞÞ
� 	�1

rðmÞ; m ¼ 0; 1; 2; . . . ð38Þ
where the residual r(m) consists of a low-order part plus limited antidiffusion
rðmÞ ¼ ½ML þ ð1� hÞDtL�un � ½ML � hDtL�uðmÞ þ Dtf � ð39Þ
and A(u(m)) is a suitably chosen ‘preconditioner’. Some typical choices are
A ¼ ML ð40Þ

(only suitable for very small Dt) and the low-order operator [21,22]
A ¼ ML � hDtL; ð41Þ

which was designed to be an M-matrix. Alternatively, algebraic flux/defect correction schemes may be precon-
ditioned by the nonlinear LED operator
A ¼ ML � hDtL�ðuÞ; ð42Þ

where L*(u) includes limited antidiffusion. The existence of this operator is guaranteed by the flux limiter
[22,23]. This kind of preconditioning renders all intermediate solutions u(m) positivity-preserving [17] but con-
vergence is a prerequisite for mass conservation.

In practice, the ‘inversion’ of A is performed by solving the linear subproblem
ADuðmþ1Þ ¼ rðmÞ; m ¼ 0; 1; 2; . . . ð43Þ

After a certain number of inner iterations, the solution increment Du(m+1) is applied to the last iterate, whereby
un provides a reasonable initial guess
uðmþ1Þ ¼ uðmÞ þ Duðmþ1Þ; uð0Þ ¼ un: ð44Þ
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The iteration process is terminated when a certain norm of the defect r(m) or that of the relative changes
Du(m+1) becomes small enough. Explicit and/or implicit underrelaxation techniques may be invoked to secure
the convergence of outer iterations [13].

Let us summarize what we have said so far and piece together a practical algorithm for node-oriented flux
correction based on the general-pupose flux limiter (32)–(35):

1. For each pair of neighboring nodes i and j, orient the edge ~ij so that lij 6 lji, prelimit the flux fij in accor-
dance with (22) and compute Dfij :¼ fij � f 0ij.

2. Add the corresponding edge contributions to the sums of positive/negative fluxes
P�i :¼ P�i þ max
min
f0; fijg; P�j :¼ P�j þ max

min
f0;�Dfijg: ð45Þ
3. Update the combined upper/lower bounds (33) for both nodes as follows
Q�i :¼ Q�i þ
mij

Dt
þ lij

h i
max
min
f0; uj � uig;

Q�j :¼ Q�j þ
mji

Dt
þ lji

h i
max
min
f0; ui � ujg:

ð46Þ
4. In a loop over nodes, compute the nodal correction factors to be applied
R�i ¼ min 1;Q�i =P�i
� �

: ð47Þ
5. Multiply the upwind part f 0ij by R�i and add its contribution to the defect r
f �ij ¼
Rþi f 0ij if f 0ij > 0;

R�i f 0ij otherwise;

(
ri :¼ ri þ Dtf �ij;

rj :¼ rj � Dtf �ij:
ð48Þ
6. Limit the remainder Dfij in a symmetric fashion and insert it into the defect
Df �ij ¼
min Rþi ;R

�
j

n o
Dfij if Dfij > 0;

min R�i ;R
þ
j

n o
Dfij otherwise;

8><
>:

ri :¼ ri þ DtDf �ij ;

rj :¼ rj � DtDf �ij :
ð49Þ
This ‘black-box’ algorithm can be readily integrated into existing finite element codes based on both conven-
tional (element-based) and edge-based data structures.
6. Numerical examples

In order to illustrate the ideas presented in this paper, we apply the new limiting strategy to the continuity
equation (1) discretized in space by P1/Q1 finite elements. Throughout this section, the numerical error will be
estimated by measuring the difference between the exact solution u and its finite element approximation uh in
the discrete L1-norm
E1 ¼
X

i

mijuðxi; yiÞ � uij 	
Z

X
ju� uhjdx ¼ jju� uhjj1 ð50Þ
as well as in the discrete L2-norm defined by the formula
E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

mijuðxi; yiÞ � uij2
r

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
ju� uhj2 dx

s
¼ ku� uhk2; ð51Þ
where mi ¼
R

X ui dx are the diagonal coefficients of the lumped mass matrix. The error norms will be presented
in Figs. 1–8 along with the corresponding numerical solutions.
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6.1. Convection of a square wave

Let us start with a classical test problem which consists of solving the one-dimensional convection equation
(12) for the discontinuous initial data
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Fig. 1. Convection of a square wave: numerical solutions at t = 0.5.
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uðx; 0Þ ¼
1 if jx� 0:2j 6 0:1;

0 otherwise

�
ð52Þ
depicted as dashed lines in Fig. 1. The dotted lines show the exact solution for v = 1 and t = 0.5 which is ob-
tained by translation of the initial profile along the x-axis. The domain (0, 1) is discretized by linear finite ele-
ments of equal length Dx = 10�2, so that the time step Dt = 10�3 used to compute the solutions in Fig. 1
corresponds to the Courant number m = 0.1. The discretization in time is performed by the second-order accu-
rate Lax–Wendroff method so that dij = (1 � m)v/2. The accuracy of numerical solutions is evaluated in terms
of the discrete error norms (50) and (51) which are included in all diagrams. The behavior of standard TVD
schemes for this simple test problem is well known. As usual, the most diffusive results are produced by the
minmod limiter, while superbee performs best on such discontinuous solutions but tends to corrupt smooth
profiles due to artificial steepening. Limiters like MC produce acceptable results in either case and are typically
used by default. For the square wave problem, the MC limiter proves far superior to minmod but less accurate
than superbee, see Fig. 1a–c.

The target flux for the Lax–Wendroff scheme corresponds to that for a lumped-mass (LM) Taylor–Galer-
kin method of second order. As shown in Fig. 1d, the resulting solution is asymmetric, whereby the right flank
of the square wave is reproduced much better than the left one. The latter is smeared as much as that for min-
mod, which is due to mass lumping. Adding the contribution of the consistent mass (CM) matrix yields a tar-
get flux with improved phase characteristics [10]. Limiting it as before in accordance with (16) is equivalent to
the use of algebraic flux correction based on (25)–(27). The numerical solution displayed in Fig. 1e resembles
that produced by superbee. Note that the upper right corner of the square wave remains ‘rounded’ because the
bounds (26) turn out to be too restrictive for transient problems. This can be rectified by invoking the general-
purpose limiter (32)–(35) which is designed to become more accurate as the time step is refined. An equally
crisp resolution of both flanks is obtained for Dt = 10�4, see Fig. 1f. We conclude that the use of a consistent
mass matrix is essential not only for the definition of the target flux but also for the estimation of upper and
lower bounds.

6.2. Convection of a semi-ellipse

Our second test problem is a slightly modified version of the one used in [32,39,40] to expose the ‘terracing’
phenomenon, an infamous byproduct of flux limiting. The linear convection equation is solved for continuous
initial data given by the formula
uðx; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� 0:2

0:15

� 2
s

if jx� 0:2j 6 0:15 ð53Þ
and u(x, 0) = 0 otherwise. All discretization parameters are the same as in the first example. The challenge of
the second test consists in resolving the steep parts of the otherwise smooth profile without generating spurious
kinks or plateaus. Such a nonphysical solution behavior, which is a common drawback of many modern high-
resolution schemes, is referred to as terracing and can be interpreted as ‘an integrated, nonlinear effect of resid-
ual phase errors’ [32] or, loosely speaking, ‘the ghosts of departed ripples’ [5].

Terracing was first discovered in the FCT context but it is also typical of compressive TVD limiters like
superbee, see Fig. 2a. At the same time, an excellent solution is produced by Koren’s limiter (Fig. 2b) which
is based on a third-order accurate target flux. In the finite element framework, mass lumping tends to aggra-
vate phase errors, which manifests itself in a pronounced terracing (Fig. 2c). The solution displayed in Fig. 2d
illustrates the benefits of using the consistent mass matrix in conjunction with the general-purpose flux limiter.
Remarkably, the corresponding error norms are even smaller that those for the optically perfect solution in
Fig. 2b. The observed improvement in comparison to the lumped-mass version supports the conjecture that
terracing can be cured to some extent by increasing the resolving power of the target flux so as to reduce
the dispersive errors [39,40]. Numerical experiments indicate that the small but still noticeable deviations from
the exact shape at the right edge of the semi-ellipse in Fig. 2d are caused by the fluxes that prove insufficiently
antidiffusive (more diffusive than minmod and, consequently, not linearity-preserving) in spite of the prelim-
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Fig. 2. Convection of a semi-ellipse: numerical solutions at t = 0.5.
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iting performed in (31). Indeed, false diffusion cannot be detected by the flux limiter and should be filtered out
beforehand.

6.3. Solid body rotation

Let us proceed to the two-dimensional benchmark problem proposed by LeVeque [26] which makes it pos-
sible to assess the ability of a high-resolution scheme to preserve both smooth and discontinuous profiles. To
this end, a slotted cylinder, a sharp cone and a smooth hump are exposed to the nonuniform velocity field
v = (0.5�y,x�0.5) and undergo a counterclockwise rotation about the center of the unit square
X = (0,1) · (0,1). Each solid body lies within a circle of radius r0 = 0.15 centered at a point with Cartesian
coordinates (x0,y0). In the rest of the domain, the solution is initialized by zero. The shapes of the three bodies
as depicted in Fig. 3 can be expressed in terms of the normalized distance function for the respective reference
point (x0,y0) thus:
rðx; yÞ ¼ 1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2
q

:

The center of the slotted cylinder is located at (x0,y0) = (0.5,0.75) and its geometry in the circular region
r(x,y) 6 1 is given by



Fig. 3. Solid body rotation: initial data/exact solution.

Fig. 4. Solid body rotation (GP), E1 = 0.0111, E2 = 0.0567.

Fig. 5. Solid body rotation (superbee), E1 = 0.0139, E2 = 0.0610.
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Fig. 6. Solid body rotation (MC), E1 = 0.0255, E2 = 0.0889.
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uðx; y; 0Þ ¼
1 if jx� x0jP 0:025 _ y P 0:85;

0 otherwise:

�

The corresponding analytical expression for the conical body reads
uðx; y; 0Þ ¼ 1� rðx; yÞ; ðx0; y0Þ ¼ ð0:5; 0:25Þ;
whereas the shape and location of the hump at t = 0 are as follows:
uðx; y; 0Þ ¼ 0:25½1þ cosðp minfrðx; yÞ; 1gÞ�; ðx0; y0Þ ¼ ð0:25; 0:5Þ:

After one full revolution (t = 2p) the exact solution of the continuity equation (1) coincides with the initial

data. The numerical solutions presented in Figs. 4–6 were computed on a uniform mesh of 128 · 128 bilinear
finite elements using the second-order accurate Crank–Nicolson time-stepping (h = 0.5) with Dt = 10�3. The
general-purpose (GP) algorithm (32)–(35) produces the most accurate results shown in Fig. 4. The cone and
hump are reproduced very well and even the narrow bridge of the slotted cylinder is largely preserved. Not
surprisingly, this solution is very similar to that computed by an FCT algorithm based on the same target flux
[21]. In either case, the prelimiting of antidiffusive fluxes in (31) is essential. If it is not performed, the ridges of
the cylinder are subject to spurious erosion which can be interpreted as a sort of terracing.

By contrast, the performance of standard TVD limiters for this time-dependent test problem leaves a lot to
be desired. The strong antidiffusion inherent to superbee alleviates the diffusive effect of mass lumping and
yields a fairly good resolution of the slotted cylinder (Fig. 5) but entails a pronounced flattening of the smooth
peaks. The numerical solution produced by the ‘default’ MC limiter (Fig. 6) exhibits both a strong smearing of
the slotted cylinder and a noticeable distortion of the cone and hump.

6.4. Convection in space-time

If the problem at hand is stationary, the time derivative vanishes and so does the contribution of the con-
sistent mass matrix. Therefore, mass lumping is appropriate, i.e., the raw antidiffusive flux is given by (24) and
the upwind-biased algorithm (25)–(27) can be employed. Due to the fact that the underlying upper/lower
bounds (26) are independent of the time step, it is possible to compute the steady-state solution directly or
by means of pseudo-time-stepping based on the fully implicit backward Euler scheme (h = 1). In the latter
case, the time step represents a variable underrelaxation parameter [13] which should be chosen as large as
possible to reduce the computational cost. For an FCT-like limiter, whereby each solution update is required
to be positivity-preserving, this would entail an irrecoverable loss of accuracy, since the nodal correction fac-
tors are inversely proportional to Dt. At the same time, our general-purpose algorithm is free of this drawback
because it becomes equivalent to (25)–(27) for large time steps.



Fig. 7. Convection in space-time (LM), E1 = 0.0179, E2 = 0.0698.

Fig. 8. Convection in space-time (minmod), E1 = 0.0340, E2 = 0.0971.
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Let us return to the square wave test and reformulate the one-dimensional convection equation with v = 0.5
as a stationary problem of the form (1) with v = (0.5,1). This corresponds to computing the solution for all
time levels simultaneously instead of doing it step-by-step as usual [23]. The boundary conditions to be
imposed at the ‘inlet’ of the space-time domain X = (0, 1) · (0, 1) can be inferred from the exact solution given
by
uðx; tÞ ¼
1 if jx� 0:5t � 0:2j 6 0:1;

0 otherwise:

�
ð54Þ
The initial data can be chosen arbitrarily since they do not affect the converged steady-state solution. For
instance, the approximate solution can be initialized using (54). The numerical results obtained using alge-
braic flux correction (25)–(27) based on the lumped-mass (LM) Galerkin flux and the standard minmod
limiter are presented in Figs. 7 and 8, respectively. Both solutions were marched to the steady-state by
the backward Euler method, whereby the time step Dt = 1.0 was intentionally chosen to be very large.
The discontinuous initial profile is shown in the background, while the solution at time t = 1 appears
in the front. This example demonstrates that the algorithm to which our GP limiter reduces in the station-
ary case performs much better than minmod, the only standard TVD limiter which is consistent with the
underlying finite element scheme.
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7. Conclusions

In this paper, we focused on the design of general-purpose flux limiters for implicit finite element discret-
izations including a consistent mass matrix. Algebraic constraints were imposed node-by-node so as to control
the sum of edge contributions with negative coefficients. The choice of target fluxes was addressed and a fully
multidimensional limiting strategy was presented. The upper/lower bounds for the sum of positive/negative
antidiffusive fluxes were designed so as to enforce the LED property. A combination of flux limiters derived
separately for two special cases (consistent-mass L2-projection and lumped-mass Galerkin approximation)
was found to strike the balance between accuracy and efficiency. The new algorithm, which combines the
advantages of algebraic FCT and TVD schemes [21,22], proves sufficiently accurate for stationary and
time-dependent problems alike. An extension of the proposed methodology to the Euler and Navier–Stokes
equations of fluid dynamics can be readily performed as explained in [24,37] in the context of algebraic
TVD schemes. The design of general-purpose flux limiters for hyperbolic systems will be addressed in a forth-
coming publication [25].

Algebraic flux correction of the form (17)–(20) provides a very general framework for the derivation of new
high-resolution schemes for finite element discretizations on unstructured meshes. The resolving power and
phase characteristics of the high-order scheme can be improved by adding some background diffusion or using
a time-accurate approximation from the family of Taylor–Galerkin methods [10]. High-order finite elements/
bubble functions lend themselves to the design of target fluxes, whereas fluctuation splitting techniques [6]
seem to be a useful tool for the definition of upper/lower bounds. Last but not least, the use of flux limiters
as implicit subgrid scale models for monotonically integrated large eddy simulation (MILES) and/or error
indicators for adaptive mesh refinement [31] constitutes another promising direction for further research.
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[27] R. Löhner, K. Morgan, J. Peraire, M. Vahdati, Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier–Stokes

equations, Int. J. Numer. Meth. Fluids 7 (1987) 1093–1109.
[28] P.R.M. Lyra, Unstructured Grid Adaptive Algorithms for Fluid Dynamics and Heat Conduction, Ph.D. Thesis, University of Wales,

Swansea, 1994.
[29] P.R.M. Lyra, K. Morgan, J. Peraire, J. Peiro, TVD algorithms for the solution of the compressible Euler equations on unstructured

meshes, Int. J. Numer. Meth. Fluids 19 (1994) 827–847.
[30] R.J. MacKinnon, G.F. Carey, Positivity-preserving, flux-limited finite difference and finite element methods for reactive transport,

Int. J. Numer. Meth. Fluids 41 (2) (2003) 151–183.
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(Eds.), Flux-Corrected Transport: Principles, Algorithms, and Applications, Springer, New York, 2005, pp. 29–78.


	On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection
	Introduction
	Conservative flux decomposition
	Flux correction in one dimension
	Flux correction in multidimensions
	Treatment of convective antidiffusion
	Treatment of mass antidiffusion
	General-purpose flux limiter

	Practical implementation
	Numerical examples
	Convection of a square wave
	Convection of a semi-ellipse
	Solid body rotation
	Convection in space-time

	Conclusions
	References


